Kinetic Studies on Partial Oxidation of Methane over Samarium Oxides

KIYOSHI OTSUKA* and KIYOTAKA JINNO

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan (Received June 16, 1986)

Abstract

Kinetic studies on the oxidative coupling of methane statutes on the oxidative coupling of methane over $Sm₂O₃$ have been carried out. The experimental rate equation observed could be well explained in terms of the reaction mechanism proposed. The reaction is initiated by abstracting hydrogen atom from the methane adsorbed by the methanism guiogen atom from the methane ausoloculog the diatomic oxygen on the surface. The coupling of
two CH₃⁺ radicals leads to C₂H₆. Deep oxidation of CH_3 • produces CO and CO₂. The large activation $\frac{1}{2}$ produces CO and CO₂. The farge activation of $\sum_{i=1}^{n}$ explains the sharp is seen in the selectivity CH_3 explains the sharp increase in the selectivity to C_2 -compounds $(C_2H_6 + C_2H_4)$ as raising temperatures. The oxygen species responsible for initiating the reaction was supposed to be $0.2⁻$ or 0.5 ne reaction
Le surface

Introduction

The oxides of rare earth metals have high catalytic activities and selectivities to the formation of C_2 - $\frac{1}{2}$ continuous (C_{aH6} t C_{aH6} to the complete coupling $\frac{1}{2}$ methane $\frac{1}{2}$. $\frac{1}{2}$. Among the rare earth metal oxidence evapone of methane $[1, 2]$. Among the rare earth metal oxides tested, Sm_2O_3 is the most active and selective catalyst in the reaction $[1, 2]$. The kinetic studies of the reaction over $Sm₂O₃$ showed that the overall oxidation of $CH₄$ can be written as follows:

$$
\begin{array}{ccc}\n\text{CH}_4 & \xrightarrow{\text{I}} & \text{C}_2\text{H}_6 \xrightarrow{\text{II}} \text{C}_2\text{H}_4 \\
\text{III} & \wedge & \text{IV} \\
\text{CO}, \text{CO}_2\n\end{array} \tag{1}
$$

Since the rate of path III is greater than that of path IV, the selectivity to the formations of C_2 compounds $(C_2$ -selectivity) is determined by the relative rates of path I and III [2]. In order to get information about the reaction mechanism for paths I comation about the reaction incondition for paths and in m detail, we have called out Kinethe studies. on the partial oxidation of methane over $Sm₂O₃$. The oxygen species responsible for the reactions will be discussed.

Experimental

The $Sm₂O₃$ powder used was obtained from Asahi Chemical Industry Co. The purity of the catalyst was >99.9% and the surface area was 0.72 atalyst was $\frac{2}{3}$, $\frac{1}{2}$ and the surface area was 0.12 conventional gas flow conventional gas flow system. Methods and conventional gas flowing system. Methane and
oxygen were fed with a helium carrier over the α ygen were red with a nemum carrier over the bottom of at the bot $\frac{1}{2}$ at $\frac{1}{2}$ reactor. The experimental the experimental control to the experimental the experimental the experimental theorem quartz reactor. Details about the experimental
procedure and apparatus were described elsewhere [2]. The conversions of oxygen were controlled to be less than 5% for every kinetic experiments.

Results and Discussion

Kinetic Stidies

Figure 1 shows the pressure effect of oxygen on the rates of formation of carbon oxides $(CO₂ + CO)$, C_2H_6 and C_2H_4 at 700 °C. The selectivities to the C_2 -compound C_2 -compound C_3 = C_M C_4 , C_M C_5 _M C_6 _M C_7 $\sum_{i=1}^{\infty}$ Fig. 1. Here, the problem is the problem was kept method. in Fig. 1. Here, the pressure of methane was kept constant at 18.2 ± 0.2 kPa. No other compounds such as $CH₃OH$, HCHO and higher hydrocarbons

 α . The C₁ on the rates of formation of product and on the C₂-selectivity at 700 °C. The rates of formation of the products: \triangle , C_2H_6 ; ∇ , C_2H_4 ; \circ , CO_2 + CO. \Box , selectivity to the C₂-compounds.

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 2. Effect of $P(O_2)$ at 750 °C.

Fig. 3. Effect of $P(O_2)$ at 650 °C.

were produced. The effects of $P(O_2)$ were also were produced. The cricets of $I(0₂)$ were also $P(GH)$ 18.2 kPa. The results are shown in Fig. $P(CH_4)$ 18.2 kPa. The results are shown in Figs.
2-4. Quite high selectivities (>90%) to C₂ $z = 0$. Quite literatured (2007) to $\frac{z}{2}$ compounds $(\frac{c_2 \pi_6 + c_2 \pi_4}{\pi})$ were observed at 700 and $\frac{1}{2}$ c at low oxygen pressure. However, decreased with $\frac{1}{2}$ selectivities to C_2 -compounds decreased with increase ing the pressure of oxygen. Figures $1-4$ show that the C₂-selectivity and $C_2H_4:C_2H_6$ ratio decreased sharply with lowering reaction temperatures at the same pressure of oxygen. C_2H_4 was not produced at all at 600 °C. an at 000° C.
Figure 5 shows the effects of P(CH) on the rates

Figure 3 shows the effects of $T(0.14)$ on the rate of formations of the products at 700 °C. The pressure
of oxygen was kept constant at 0.98 ± 0.02 kPa. T_1 or effects of $P(T_1)$ were also studied at 0.70 ± 0.02 Ki and 0.760 Fig. criters of Figs. 6.8) and the same over $\frac{p}{q}$ can be C (Figs. $0-0$) under the same oxyger pressure 0.70 Kr a. The C_2 -selectivities incre

Fig. 4. Effect of $P(O_2)$ at 600 °C.

Fig. 5. Effect of $P(CH₄)$ at 700 °C.

Fig. 6. Effect of $P(CH_4)$ at 750 °C.

Fig. 8. Effect of $P(CH₄)$ at 600 °C.

The effects of $P(O_2)$ and $P(CH_4)$ on the rate of conversion of methane (r_c) observed at 750–650 °C (Figs. $1-8$) will be analyzed as follows.

Figure 9 shows the plot of $P(O_2)/r_c$ vs. $P(O_2)$ for the data obtained in the experiments for examining the pressure effects of oxygen. The good linear
correlation observed in Fig. 9 shows that the rate equation for the conversion of methane can be written as follows: *1 + K, P(o)* $\frac{1}{2}$ + $\frac{$

$$
r_c = k_o \frac{K_o' R(O_2)}{1 + K_o' R(O_2)}
$$
 (2)

 $\mathcal{F}_{\mathcal{A}}$ is the plot of \mathcal{A} shows the plot of \mathcal{A}

re, k_{o} and K_{o} are the constants at a fixed tem $true.$

Figure 10 shows the plot of $P(CH_4)/r_c$ vs. $P(CH₄)$ for the data obtained in the experiments for examining the pressure effects of CH₄ on the rates of formation of the products (Figs. 5-8). Good linear correlation between $P(\text{CH}_4)/r_c$ and $P(\text{CH}_4)$

Fig. 9. $P(O_2)/r_c$ vs. $P(O_2)$ plot.

Fig. 10. $P(CH_4)/r_c$ vs. $P(CH_4)$ plot.

can be seen for the data at different temperatures. results in Figs. 9 and 10 show the equation is written as follows:

The results in Figs. 9 and 10 show

$$
r_{\rm c} = k \frac{K_{\rm m}^{'P_{\rm C}^{'}(CH_4)}}{1 + K_{\rm m}^{'P_{\rm C}^{'}(CH_4)}} \times \frac{K_{\rm o}^{'P_{\rm C}^{'}(O_2)}}{1 + K_{\rm o}^{'P_{\rm C}^{'}(O_2)}} \tag{3}
$$

 W propose the following reaction mechanism mechanism mechanism mechanism mechanism mechanism mechanism mechanism e, κ and $K_{\mathbf{m}}$ are the constants which cha

We propose the following reaction mechanism $\frac{1}{2}$

$$
CH_4(g) \rightleftharpoons CH_4(a) \tag{i}
$$

$$
O_2(g) \Longrightarrow O_2(a) \tag{ii}
$$

$$
CH4(a) + O2(a) \longrightarrow CH3 + HO2.
$$
 (iii)

$$
CH_3 \cdot + CH_3 \cdot \longrightarrow C_2H_6 \qquad \qquad (iv)
$$

$$
CH_3 \cdot + O_2 \longrightarrow CH_3O_2 \cdot \longrightarrow \longrightarrow CO, CO_2 \qquad (v)
$$

where, adsorptions of CH_4 and O_2 , eqns. (i) and (ii), respectively, occur independently of each other on different active sites. Because of a high dissociation energy for the C-H bond of CH₄ (427 kJ mol⁻¹), it seems natural to consider that the abstraction of the hydrogen atom from CH_4 (eqn. (iii)) is the rate-determining step in the overall reaction. Here, it is assumed that the initiation (eqn. (iii)) is caused not by a monoatomic oxygen but by an adsorbed diatomic oxygen. A coupling of two CH_3 radicals produces C_2H_6 (eqn. (iv)). This reaction takes place either on the surface or in the gas phase near the surface $[3, 4]$. Deep oxidation may proceed through the oxidation of CH_3 ^{*} radicals according to eqn. (v). This reaction may take place in the gas phase and on the surface. Therefore, the oxygen species contributing in the deep oxidation could be the oxygen in the gas phase and the oxygen on the surface (adsorbed O_2 , O or lattice oxygen O^{2-}). C_2H_4 is produced by further oxidation of C_2H_6 as described previously $[2]$.

The selectivity to C_2 -compounds is determined by the competition between reactions (iv) and (v). The observation that the C_2 -selectivity decreases as the pressure of oxygen rises (Figs. $1-4$) can be ascribed to the relative increase in the rate of reaction (v) compared to the rate of reaction (iv) as $P(O_2)$ \mathbf{S} .

The temperature effect on the selectivities of the products indicated that the C_2 -selectivity increased sharply as temperatures increased [2]. Reactions (iv) and (v) in the gas phase must proceed with very low or no activation energies $[5]$. This also may be true when the reactions occur on the surface. Therefore, the strong effect of temperature on the C_2 selectivity can not be explained by the difference in the activation energies between reactions (iv) and (v). Since the abstraction of H from CH₄ (reaction iii) requires high activation energy (149 kJ mol $^{-1}$ as will be described later), the concentration of $CH₃$. radical must increase sharply with increasing temperature. The rate of reaction (iv) depends on the squares of the concentration of CH_3 radical. Thus, the increase in the rate of reaction (iv) with temperature must be greater than that of reaction (v) , which explains the higher C_2 -selectivity at higher temperatures.

TABLE I. Kinetic Parameters

According to the reaction mechanism $(i-v)$ described above, the rate of conversion of CH₄ can \mathcal{L} with \mathcal{L} as \mathcal{L}

$$
r_{\rm c} = k_{\rm iii}\theta(\rm CH_4)\theta(\rm O_2)
$$
 (4)

where k_{ii} is the rate constant of the rate-determining step iii and θ (CH₄) and θ (O₂) are the coverages of $CH₄$ and oxygen, respectively, adsorbed on different kinds of active sites. Assuming that the coverages of the sites adsorbed can be expressed by Lungmuir's \ldots , \cdot \cdot \sim σ \ldots \ldots

$$
r_{\rm c} = k_{\rm iii} n_{\rm m} n_{\rm o} \frac{K_{\rm m} P(\rm CH_4)}{1 + K_{\rm m} P(\rm CH_4)} \times \frac{K_{\rm o} P(\rm O_2)}{1 + K_{\rm o} P(\rm O_2)} \tag{5}
$$

where, $n_{\rm m}$ and $n_{\rm o}$ are the numbers of active sites per unit surface area for the adsorptions of CH₄ and O_2 , and K_m and K_o are the equilibrium constants for the adsorptions of CH_4 and O_2 , respectively. The rate eqn. (5) well explains the experimental rate eqns. (2) and (3) . Thus the kinetic results obtained in this work strongly support the reaction mechanism proposed earlier (reactions $i - v$).

The slopes for the straight lines in Fig. 9 give the value $1/k'$ defined below,

$$
1/k' = \frac{1 + K_{\rm m}P(\text{CH}_4)}{k_{\rm iii}n_{\rm m}n_{\rm o}K_{\rm m}P(\text{CH}_4)} = \frac{1 + K_{\rm m}P(\text{CH}_4)}{kK_{\rm m}P(\text{CH}_4)}\tag{6}
$$

where, $k = k_{\text{iii}} n_{\text{m}} n_{\text{o}}$. The slope-to-intercept ratio for each straight line in Fig. 9 gives K_o in eqn. (5) at

Fig. 11. $ln(k)$ vs. $1/T$ plot.

each temperature. K_m in eqn. (5) can likewise be ach competature. K_m in eq. (3) can include be $\frac{1}{2}$ $\frac{1}{2}$, $\$ Introducing the K_m to eqn. 6, we can evaluate
k because $P(CH_4)$ was kept constant (= 18.2 kPa) for the data in Fig. 9. The *k* values thus calculated are listed in the third column in Table I. Introducing to have in the time column in Table 1. millouteing the K_{o} calculated from Fig. 9 to the values of slopes in Fig. 10, we can also evaluate *k*. The values are shown in the fifth column in Table I. The *k* values in both columns agreed well with each other. The logarithm of the average value of *k* for the two columns was plotted vs. $1/T$ in Fig. 11. The straight line in Fig. 11 gives the activation energy for the activation of CH₄ (step iii) as 149 kJ mol⁻¹.

Oxygen Species Responsible for Activation of Methane the idea that the oxidation of CH4 is initiated by

 $\frac{d}{dx}$ is general (reaction iii) is generally accepted in $\frac{d}{dx}$ factoring exygen (reaction in is generally accepted If the reaction in the gas phase [0]. However, this is not so for the reaction over metal oxide catalysts.
Liu *et al.* have demonstrated that surface O^- ions are the active occurrence of \mathbf{r} in \mathbf{r} in \mathbf{r} in \mathbf{r} in \mathbf{r} ic the active oxygen species responsible for finite ing the partial oxidation of CH_4 over $MoO_3/cab-O$ sil using N_2O as an oxidant. Ito *et al.* have suggested that $[L^*O^-]$ centers are the active sites responsible $f(x)$ and $f(x)$ are the active sites responsible di-promoted MgC [4]. The monocentricity over Li-promoted MgO [4]. Thus, monoatomic oxygen species have been proposed as the active oxygen species responsible for activation of CH_4 [7]. The belies responsible for activation of C_{14} [\prime]. The there studies in this work, however, suggested that the adsorbed diatomic oxygen is the reactive oxygen species for initiating the reaction. tos for mittating the feaction.
The difference of the kind of the kind of the co

diatomic squares cannot preute the rule of T_{t} might be $\frac{1}{2}$ or $\frac{2}{2}$, or a chemical chemical additional $\frac{1}{2}$ or $\frac{1}{2}$ or a chemically adsolved that is the surface.

the active species over La_2O_3 may be a sorbed form $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ have confirmed the present confirmed the present confirmed the present confirmed the present confirmed to $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and α oxygen, e.g. α_2 . They have committed the presence of O_2 ⁻ over La₂O₃ by ESR technique [8]. Very recently we have demonstrated that the reaction
between CH_4 and Na_2O_2 proceeds smoothly, giving crween $\frac{1}{4}$ and $\frac{1}{4}$ $\frac{1}{4}$ and $\frac{1}{4}$ selectivity, $\frac{200}{6}$ $\frac{80}{1}$ t_2 -compounds with ingli selectivity at \geq 500 C in the absence of oxygen in the gas phase $[9]$. This observation suggested that the peroxide ions O_2^2 on the surface were very reactive for abstracting hydrogen atom from CH_4 . These results suggest that the dioxygen species responsible for initiating the abstraction of H from CH4 (reaction in the could $\frac{1}{2}$ or $\frac{2}{3}$ or be O_2^2 or O_2 as far as the reaction over rare earth metal oxides is concerned.

Acknowledgement

The authors wish to express their gratitude to Price authors wish to express their grant

References

- 1 K. Otsuka, K. Jinno and A. Morikawa, *Chem. Left., 499 (1985). 2* K. Otsuka, K. Jinno and A. Morikawa, J. *Catal., 100,*
- *353 (1986). 333* (1980).
- form. **J. Driscou, w. Martif, Ji-Alang wang.** ford, J. Am. Chem. Soc., 107, 58 (1985).
- 4 T. Ito, Ji-Xiang Wang, Chiu-Hsun Lin and J. H. Lunsford, J. Am. Chem. Soc., 107, 5062 (1985).
- 5 I. A. Vardanyan, S. Yan and A. B. Nalbandyan, Kinet. *Katal., 22, 845 (1981).*
- 6 R. W. Walker, in 'Reaction Kinetics', Vol. 1, The Chemical Society London, 1975, p. 161 and refs. therein.
- 7 R. Pitchai and K. Klier, Catal. Rev., 28, 13 (1986).
- Chiu-Hsun Lin, K. D. Campbell, Ji-Xiang Wang and J. H. Lunsford, *J. Phys. Chem.*, 90, 534 (1986). **Lunsiora, J. Phys. Chem., 90, 534 (1986).**
- . Otsuka, A. A. Sai